- completely invertible operator
- вполне обратимый оператор
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Square root of a matrix — In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix B is said to be a square root of A if the matrix product B · B is equal to A.[1] Contents 1 Properties 2 Computation methods … Wikipedia
Representation theory — This article is about the theory of representations of algebraic structures by linear transformations and matrices. For the more general notion of representations throughout mathematics, see representation (mathematics). Representation theory is… … Wikipedia
Eigenvalues and eigenvectors — For more specific information regarding the eigenvalues and eigenvectors of matrices, see Eigendecomposition of a matrix. In this shear mapping the red arrow changes direction but the blue arrow does not. Therefore the blue arrow is an… … Wikipedia
Formal power series — In mathematics, formal power series are devices that make it possible to employ much of the analytical machinery of power series in settings that do not have natural notions of convergence. They are also useful, especially in combinatorics, for… … Wikipedia
Inverse problem — An inverse problem is a general framework that is used to convert observed measurements into information about a physical object or system that we are interested in. For example, if we have measurements of the Earth s gravity field, then we might … Wikipedia
Cholesky decomposition — In linear algebra, the Cholesky decomposition or Cholesky triangle is a decomposition of a Hermitian, positive definite matrix into the product of a lower triangular matrix and its conjugate transpose. It was discovered by André Louis Cholesky… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… … Wikipedia
cryptology — cryptologist, n. cryptologic /krip tl oj ik/, cryptological, adj. /krip tol euh jee/, n. 1. cryptography. 2. the science and study of cryptanalysis and cryptography. [1635 45; < NL cryptologia. See CRYPTO , LOGY] * * * Introduction … Universalium
Commutation theorem — In mathematics, a commutation theorem explicitly identifies the commutant of a specific von Neumann algebra acting on a Hilbert space in the presence of a trace. The first such result was proved by F.J. Murray and John von Neumann in the 1930s… … Wikipedia
Weyl quantization — In mathematics and physics, in the area of quantum mechanics, Weyl quantization is a method for systematically associating a quantum mechanical Hermitian operator with a classical kernel function in phase space invertibly. A synonym is phase… … Wikipedia